

Managing Multiple Internet
Connections with Shorewall

Tom Eastep

Linuxfest Northwest

April 24-25, 2010

http://www.shorewall.net

Agenda

 Introduction
 Routing Refresher
 Introduction to Policy Routing
 Policy Routing and Shorewall
 Monitoring Link Status and Reacting to Failures
 Q&A

Introduction
About Me

 I am the creator of Shorewall
 I work for Hewlett-Packard

 My job there has nothing to do with IP Networking
 Shorewall development is not supported by HP

 This presentation is my own and does not
represent HP in any way.

Introduction

 Having two or
more internet
links in a SOHO
environment is
becoming more
common.

 Largely a routing
problem

Introduction
Requirements

 Optional load
balancing

 Control which
link to use for
particular traffic

 Failover

Introduction
Requirements

 Shorewall can
meet these
requirements but
a basic
understanding of
policy routing on
Linux can make
things go
smoother.

Routing Refresher - Tables

 Routing is directed by a routing table
 A table entry contains (among other things):

 Destination Network (may be a /32, in which case
it is called a host route)

 Interface
 Gateway (Optional)

 Usually includes a host IP address
 If omitted, the destination network is connected

directly to the interface.
 Otherwise, specifies the next hop; packets are sent to

the next hop using the Gateway's Layer 2 Address

Routing Refresher – Routing
Tables

 Example from a Desktop Linux System
root@tipper:~# ip route ls
172.20.1.0/24 dev eth0 proto kernel scope global src 172.20.1.132 metric 1
169.254.0.0/16 dev eth0 proto kernel scope link metric 1000
default via 172.20.1.254 dev eth0 proto static
root@tipper:~#

 Ordered by most-specific to least-specific
 ”via” denotes the gateway
 ”default” is an alias for 0.0.0.0/0 which matches

any IP address
 First match determines routing

Routing Refresher – Routing
Tables

 Point-to-point routes don't need to specify an IP
address for the gateway:

default via dev ppp0

Routing Refresher
Routing Vs. Rules

 Routing determines where packets go
 Firewall filtering determines if they are allowed

to go there or not
 DNAT firewall rules can change the destination

address in packets but that occurs before
routing (nat PREROUTING chain on Linux).

 SNAT firewall rules can change the routing of
response packets.

Routing Refresher
Response Packets

 Response packets are not like carrier pidgons – they
don't instinctively know their way home

 Response packets can take a route other than the
reverse of the corresponding request packet's route
(asymmetric routing)

 The route taken by a response packet must be
through all routers that perform DNAT on request
packets.

 In the context of this talk, a response packet should go
out the interface that the corresponding request
arrived through

Policy Routing

 Linux Policy Routing
 Multiple Routing Tables

 Referred to by number and optionally by name
 /etc/iproute2/rt_tables gives the correspondence

between name and number
 Routing Rules

 Ordered by priority
 If a packet matches a rule, it is routed using the related

table
 If not routed by that table, the next rule is tested

 Always Enabled

Policy Routing - Example

 Example of Default /etc/iproute2/rt_tables
#
reserved values
#
255 local
254 main
253 default
#
local
#

 Example of Default Routing Rules
root@tipper:~# ip rule ls
0: from all lookup local
32766: from all lookup main
32767: from all lookup default
root@tipper:~#

mailto:root@tipper
mailto:root@tipper

Policy Routing – Example
Continued

 ”local” Routing Table
root@tipper:~# ip route ls table local
broadcast 127.255.255.255 dev lo proto kernel scope link src 127.0.0.1
broadcast 172.20.1.0 dev eth0 proto kernel scope link src 172.20.1.132
local 172.20.1.132 dev eth0 proto kernel scope host src 172.20.1.132
broadcast 172.20.1.255 dev eth0 proto kernel scope link src 172.20.1.132
broadcast 127.0.0.0 dev lo proto kernel scope link src 127.0.0.1
local 127.0.0.1 dev lo proto kernel scope host src 127.0.0.1
local 127.0.0.0/8 dev lo proto kernel scope host src 127.0.0.1
root@tipper:~#

 ”default” Routing Table is normally empty
root@tipper:~# ip route ls table default
root@typper:~#

Policy Routing – Routing Rules

 Routing rules allow assigning a packet to a
table based on its firewall mark (fwmark) value
(Netfilter's ”Swiss Army Knife”)

 Other routing keys are:
 Input Interface
 Source Address (net or host)
 Destination Address (net or host)
 TOS

Policy Routing – Balanced Routes

 Route with multiple next-hop gateways
 Round-robin assignment by connection
 Allows multiple default routes from a single system

to be ”load-balanced”
 Given that it is strictly round-robin, balancing isn't

perfect.

Policy Routing – Balanced Routes

 Example 1 (ppp devices):
default

 nexthop via dev ppp0 weight 1
 nexthop via dev ppp1 weight 2

 Example 2
default

 nexthop via 10.253.0.254 dev eth1 weight 1
 nexthop via 66.146.173.97 dev eth2 weight 2

 ”weight > 1” causes duplication of the route in the
list so it is assigned more often.

Requirements

 Load balancing
 Failover
 Assign link to use

for particular
traffic

Shorewall and Policy Routing

 Shorewall Multi-ISP feature allows you to
define:
 Multiple Additional Routing Tables
 Balanced Routes (with weights)
 Assignment of particular connections to a specific

table.
 Geared toward multiple internet links from a single

firewall/gateway
 Other uses are possible

Shorewall Provider

 Each Shorewall (Internet Service) Provider:
 Is normally associated with an internet link

 Again, there are other uses described on the web site
 Has it's own routing table
 Defines a next-hop gateway
 Typically has an fwmark value associated with it.
 Defined by an entry in /etc/shorewall/providers

 Up to 255 providers may be defined

Shorewall Providers
Simple Example

 Two internet links balanced
#PROVIDER NUM MARK DUP INTERFACE GATEWAY OPTIONS COPY
ISP1 1 1 main eth0 detect balance,track eth2
ISP2 2 2 main eth1 detect balance,track eth2

 MARK=1 causes any packet with firewall mark value 1
to be routed using the ISP1 routing table.

 'DUP=main' causes the main routing table to be
copied to create the provider's table

 'COPY=eth2' means that only routes out of eth2 are to
be copied.

 'track' insures that a response goes out the interface
that the corresponding request entered through

Shorewall Providers
Simple Example

#PROVIDER NUM MARK DUP INTERFACE GATEWAY OPTIONS COPY
ISP1 1 1 main eth0 detect balance,track eth2
ISP2 2 2 main eth1 detect balance,track eth2

 'balance' causes a balanced default route to replace
the default route in the main table. 'balance=n' causes
the nexthop weight to be set to n.

 'track' locks connections to providers using connection
marks. Can be made the default by setting
TRACK_PROVIDERS=Yes in shorewall.conf.

Shorewall Providers
Simple Load-balancing Example

#PROVIDER NUM MARK DUP INTERFACE GATEWAY OPTIONS COPY
ISP1 1 1 main eth0 detect balance,track eth2
ISP2 2 2 main eth1 detect balance,track eth2

 Generated Routing Rules
0: from all lookup local
10001: from all fwmark 1 lookup ISP1
10002: from all fwmark 2 lookup ISP2
20000: from addr-of-eth0 lookup ISP1
20256: from addr-of-eth1 lookup ISP2
32766: from all lookup main
32767: from all lookup default

 ISP1 Routing Table
206.124.146.254 dev eth2 scope link src 206.124.146.176
172.20.1.0/24 dev eth2 proto kernel scope link src 172.20.1.254
default via 206.124.146.254 dev eth2 src 206.124.146.176

Shorewall Providers - Selecting
Provider for a Connection

 Although the routes are 'balanced', you still
have control over which interface is used:

 PREROUTING entries in /etc/shorewall/tcrules.
 Use provider 1 except for outgoing mail and SSH

 #MARK/ SOURCE DEST PROTO DEST
 #CLASSIFIER PORT(S)
 1:P - -
 2:P - - TCP 22,25

 In this configuration, forwarded traffic never
goes through the main routing table.

 May also use /etc/shorewall/route_rules
which will be mentioned again later

Shorewall Providers
VPN Issues

 The previous configuration works badly if the main
table is being dynamically altered by VPN servers and
clients because the provider tables don't get updated.
Example: SSH to a host connected through a VPN.

 Solution 1: Add a route rule in
/etc/shorewall/route_rules to route VPN traffic through
the main table
#SOURCE DEST PROVIDER PRIORITY
#
#OpenVPN clients
#
- 172.20.0.0/24 main 1000

Shorewall Providers
USE_DEFAULT_RT=Yes

 Solution 2: USE_DEFAULT_RT=Yes in shorewall.conf
and use this provider configuration
#PROVIDER NUM MARK DUP INTERFACE GATEWAY OPTIONS COPY
ISP1 1 1 - eth0 1.2.3.4 track -
ISP2 2 2 - eth1 5.6.7.8 track -

Shorewall Providers
USE_DEFAULT_RT

 Causes a balanced default route to be added to the
default table rather than to the main table (balance=1
is the default for all providers)

 All traffic traverses the main table; even traffic marked
to be routed out of a particular provider.

 Only works well with static gateways because the
main table has no default route in it.

 Dynamic IP management like DHCP wants to add
a default route in the main table

Shorewall Providers
USE_DEFAULT_RT

 Routing Rules when USE_DEFAULT_RT=Yes
0: from all lookup local
999: from all lookup main
10000: from all fwmark 1 lookup ISP1
10001: from all fwmark 2 lookup ISP2
20000: from addr-of-eth0 lookup ISP1
20256: from addr-of-eth1 lookup ISP2
32767: from all lookup default

Shorwall Providers
Fallback Providers

 shorewall.net configuration:
 A fast cable link (Comcast) with a single dynamic

IP address
 A slower DSL link (Avvanta) with 5 static IP

addresses
 OpenVPN servers running on both

 Goal:
 Use the Comcast link except where a static IP

address is required or when the Comcast link is
down.

Shorwall Providers
Fallback Providers

 Solution – make Avvanta a 'fallback' provider.
#PROVIDER NUM MARK DUP IFACE GATEWAY OPTIONS COPY
Comcast 1 1 main eth0 detect balance eth2,\
 venet0,\
 tun+
Avvanta 2 2 main eth1 detect fallback eth2,\
 venet0,\
 tun+

 The dynamic default route for Comcast is in the main
table (balance)

 The static default route for Avvanta is in the default
table (fallback)

 TRACK_PROVIDERS=Yes in shorewall.conf causes
'track' to be assumed on both providers.

Shorwall Providers
Fallback Providers

 /etc/shorewall/route_rules:
#SOURCE DEST PROVIDER PRIORITY
#
#OpenVPN clients
#
- 172.20.0.0/24 main 1000
#
Servers in OpenVZ containers – routes are generated by OpenVZ
#
- 206.124.146.177 main 1001
- 206.124.146.178 main 1001
#
All 5 static IP addresses
#
206.124.146.176/30 - Avvanta 26000
206.124.146.180 - Avvanta 26000

Shorwall Providers
Fallback Providers

 Generated routing rules:
0: from all lookup local <== Default
1001: from all to 206.124.146.177 lookup main <== route_rules
1001: from all to 206.124.146.178 lookup main <== route_rules
10000: from all fwmark 1 lookup Avvanta <== track
10001: from all fwmark 2 lookup Comcast <== track
20256: from 76.104.233.98 lookup Comcast <== no 'loose'
26000: from 206.124.146.176/30 lookup Avvanta <== route_rules
26000: from 206.124.146.180 lookup Avvanta <== route_rules
32766: from all lookup main <== Default
32767: from all lookup default <== Default

 Note: 76.104.233.98 is the dynamic address of eth0

Dead Gateway Detection
Failover

 Most SOHO ISP accounts don't offer routing
protocol support.

 Linux lacks passive Dead Gateway Detection
(DGD) without kernel patching.

 Solution – Active DGD (pinging)
 Not a great choice but all we have
 Shorewall isn't a daemon so it can't do the pinging

itself
 Solution: Link Status Monitor (LSM)-

http://lsm.foobar.fi/

Dead Gateway Detection
Failover

 LSM keeps track of which interfaces are up and
down and calls a user-provided script when an
interface changes state.

 The isusable Shorewall extension script (user
exit) can be used to help decide if the interface
is up or down.

 The user-provider LSM script creates status
files in /var/lib/shorewall/ which can be
interrogated by the Shorewall isusable helper.

Dead Gateway Detection
Failover

 The key is to arrange your Shorewall
configuration such that if either of the interfaces
fails or comes back up, a simple shorewall
restart -f command will succeed

 On status change, LSM script re-writes status
file(s) and does 'shorewall restart -f'

 Provider interfaces should be defined as
optional in /etc/shorewall/interfaces

 When an optional provider is not available, its
routing table and rules are deleted by restart.

Dead Gateway Detection
LSM Log

lsm: link Avvanta down eventlsm: link Avvanta down event
lsm: name = Avvanta, replied = 80, waiting = 20, timeout = 20, late reply = 0, cons rcvd = 0, cons wait = 2, cons lsm: name = Avvanta, replied = 80, waiting = 20, timeout = 20, late reply = 0, cons rcvd = 0, cons wait = 2, cons
miss = 2, avg_rtt = 126.305, seq = 7884miss = 2, avg_rtt = 126.305, seq = 7884
lsm: seq *lsm: seq *
lsm] used 11lsm] used 11
lsm: wait 0000000000111001000100000000000001000000000000000000000001010110111000000000010001100001100100000100lsm: wait 0000000000111001000100000000000001000000000000000000000001010110111000000000010001100001100100000100
lsm: replied 1111111111000110111011111111111110111111111111111111111110101001000111111111101110011110011011111011lsm: replied 1111111111000110111011111111111110111111111111111111111110101001000111111111101110011110011011111011
lsm: timeout 0000000000111001000100000000000001000000000000000000000001010110111000000000010001100001100100000100lsm: timeout 0000000000111001000100000000000001000000000000000000000001010110111000000000010001100001100100000100
lsm: error 00lsm: error 00

Dead Gateway Detection
LSM Email

Hi,Hi,

Connection Avvanta is now down.Connection Avvanta is now down.

Following parameters were passed:Following parameters were passed:

newstate = downnewstate = down
name = Avvantaname = Avvanta
checkip = 206.124.146.254checkip = 206.124.146.254
device = eth2device = eth2
warn_email = teastep@shorewall.netwarn_email = teastep@shorewall.net

Packet counters:Packet counters:
replied = 80 packets repliedreplied = 80 packets replied
waiting = 20 packets waiting for replywaiting = 20 packets waiting for reply
timeout = 20 packets that have timed out (= packet loss)timeout = 20 packets that have timed out (= packet loss)
reply_late = 0 packets that received a reply after timeoutreply_late = 0 packets that received a reply after timeout
cons_rcvd = 0 consecutively received replies in sequencecons_rcvd = 0 consecutively received replies in sequence
cons_wait = 1 consecutive packets waiting for replycons_wait = 1 consecutive packets waiting for reply
cons_miss = 1 consecutive packets that have timed outcons_miss = 1 consecutive packets that have timed out
avg_rtt = 150928 average rtt, notice that waiting and timed out packets have rtt = 0 when calculating thisavg_rtt = 150928 average rtt, notice that waiting and timed out packets have rtt = 0 when calculating this

Your LSM DaemonYour LSM Daemon

More Information

http://www.shorewall.net/MultiISP.html

Q & A

Backup Slides

Hairpinning Example
(Why the NAT rule is Important)

Router
206.124.146.176

and
192.168.1.254/24

192.168.1.4/24 192.168.1.5/24

To: 206.124.146.176:80
From: 192.168.1.4:55555

To: 192.168.1.5:80
From: 192.168.1.4:55555

To: 192.168.1.4:55555
From: 192.168.1.5:80

Netfilter Packet Flow

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

